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Summary: We developed a clinical model and laboratory model for predicting the in-hospital 

mortality of COVID-19 patients, the AUCs (95% CI) were 0.88 (0.80, 0.95) and 0.98 (0.92, 0.99) in 

training cohort, and 0.83 (0.68, 0.93) and 0.88 (0.77, 0.95) in validation cohort, respectively. 
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ABSTRACT 

Background  

This study aimed to develop mortality-prediction models for patients with Coronavirus 

disease 2019 (COVID-19). 

Methods 

The training cohort were consecutive patients with COVID-19 in the First People’s Hospital 

of Jiangxia District in Wuhan from January 7, 2020 to February 11, 2020. We selected 

baseline clinical and laboratory data through the stepwise Akaike information criterion and 

ensemble XGBoost model to build mortality-prediction models. We then validated these 

models by randomly collecting COVID-19 patients in the Infection department of Union 

Hospital in Wuhan from January 1, 2020, to February 20, 2020. 

Results 

296 patients with COVID-19 were enrolled in the training cohort, 19 of whom died during 

hospitalization and 277 were discharged from the hospital. The clinical model developed with 

age, history of hypertension and coronary heart disease showed AUC of 0.88 (95% CI, 0.80-

0.95); threshold, -2.6551; sensitivity, 92.31%; specificity, 77.44% and negative predictive 

value (NPV), 99.34%. The laboratory model developed with age, high-sensitivity C-reactive 

protein (hsCRP), peripheral capillary oxygen saturation (SpO2), neutrophil and lymphocyte 

count, D-dimer, aspartate aminotransferase (AST) and glomerular filtration rate (GFR) had a 

significantly stronger discriminatory power than the clinical model (p=0.0157), with AUC of 

0.98 (95% CI, 0.92-0.99); threshold, -2.998; sensitivity, 100.00%; specificity, 92.82% and 

NPV, 100.00%. In the subsequent validation cohort (N=44), the AUCs (95% CI) were 0.83 

(0.68, 0.93) and 0.88 (0.75, 0.96) for clinical model and laboratory model, respectively. 

Conclusions 

We developed two predictive models for the in-hospital mortality of patients with COVID-19 

in Wuhan and validated in patients from another center. 

 

Keywords: COVID-19; Predictive model; Mortality. 
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Introduction 1 

Several cases of “unknown viral pneumonia” have been reported in Wuhan, Hubei 2 

Province, China since December 2019. The causative agent was revealed as a novel 3 

coronavirus named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the 4 

International Committee on Taxonomy of Viruses. The disease caused by SARS-CoV-2 was 5 

named coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO).1 6 

This infectious disease has rapidly spread from Wuhan to other Chinese regions2. Since mid-7 

march 2020, cases have been detected in most countries worldwide and community spread is 8 

being detected in a growing number of countries. On March 11, the COVID-19 outbreak was 9 

characterized as a pandemic by the WHO external icon. As of March 14, 2020, 23:05, 81,032 10 

and 67,287 people have been diagnosed with COVID-19 in and beyond China, respectively, 11 

and 3194 patients died of this disease in mainland China. 12 

Mild acute respiratory infection symptoms, such as fever, dry cough, and fatigue, 13 

commonly occur in the early stages of COVID-19, but some patients might rapidly develop 14 

acute respiratory distress syndrome, acute respiratory failure, multiple organ failure, and other 15 

fatal complications.3,4 No specific treatment has been fully developed for COVID-19; thus, 16 

early identification of patients with poor prognosis may facilitate the provision of proper 17 

supportive treatment in advance and reduce mortality. 18 

COVID-19-related deaths are more common in elderly people or patients with increasing 19 

counts of neutrophils and D-dimer or decreasing counts of lymphocytes.5 However, whether 20 

these risk factors can predict a fatal outcome is unknown. Current studies on COVID-19 have 21 

focused on the epidemiology and clinical features of the patients,4,6 but information regarding 22 

the prediction of its prognosis is scarce. This study aimed to develop a model that precisely 23 

predicts the outcome of death for patients with COVID-19. 24 

  25 
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Methods 26 

Study design and participants 27 

The participants in the training cohort were all the consecutive patients diagnosed with 28 

COVID-19 in the First People’s Hospital of Jiangxia District in Wuhan, a major hospital in 29 

the Jiangxia District. We collected data on patients hospitalized from January 7, 2020, 17:58 30 

to February 11, 2020, 22:01. A total of 296 patients with final outcome (i.e. discharged or 31 

dead) were enrolled in this study before February 12, 2020, 14:00. We then randomly 32 

collected patients with COVID-19 who had been hospitalized in the Infection department of 33 

Union Hospital in Wuhan from January 1, 2020, to February 20, 2020 to form our validation 34 

cohort. A flow diagram is showed in Figure 1. 35 

The data of these participants were used to construct two predictive models for in-36 

hospital mortality. The study protocol was approved by the Medical Ethics Committee of the 37 

First People’s Hospital of Jiangxia District and Union Hospital, and was complied with the 38 

Declaration of Helsinki. We verbally informed the patients that their data would be used 39 

anonymously for medical studies and obtained their permission. Written informed consent 40 

was not gathered, because the data were anonymous and the study was observational. 41 

Variable measurement 42 

Previous medical history, age, cough and fever (the oral temperature>37.5 ℃, the 43 

axillary temperature>37℃, or the body temperature fluctuates more than 1℃ in a day) for 44 

every subject were obtained by trained nurses. The laboratory data of the first examination 45 

after admission of every subject were also collected. 46 

All blood and urinary samples were processed within two hours of collection. Routine 47 

blood tests (including white blood cell count [WBC], neutrophil count, lymphocyte count and 48 

monocyte count) were measured using BC-3000 auto haematology analyser (Mindray 49 

Medical International, Inc.). Blood coagulation including plasma D-dimer, prothrombin time 50 

(PT), international normalized ratio (INR), activated partial prothrombin time (APTT), and 51 

thrombin time (TT) were measured using the immunoturbidimetry by ACL TOP system 52 

(Instrumentation Laboratory, Milan, Italy). HsCRP was detected by immunoturbidimetry in a 53 

Japanese automatic biochemical analyzer (Olympus AU2700). Blood Urea nitrogen (BUN), 54 

creatinine (Cr), and glomerular filtration rate (GFR) were measured by enzymatic method, 55 

Jaffe’s kinetic method and the enzymatic equation. Total bilirubin (TBil) was measured by 56 

vanadate oxidation method, creatine kinase (CK) was measured by continuous monitoring 57 

method, CK-MB was measured by immunosuppression method, Alanine aminotransferase 58 
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(ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH) and blood ammonia 59 

were measured by velocity method, albumin (ALB) was measured by bromocresol puple 60 

method, globulin (GLO) was measured by colorimetric method on a Beckman-Coulter 61 

AU5800 (Beckman-Coulter Co, Brea, CA, USA). 62 

Diagnosis of COVID-19 63 

Meeting any of the following etiological evidence can be defined as COVID-19: 64 

1. Respiratory tract or blood specimens positive for SARS-CoV-2 nucleic acid by real-65 

time fluorescent RT-PCR; 66 

2. Virus in respiratory tract or blood specimens found highly homologous with new 67 

SARS-CoV-2 by genetic sequencing. 68 

3. Suspected cases with imaging features of pneumonia (according to the “Diagnosis and 69 

treatment plan for pneumonia infected with new coronavirus [trial version 5]” issued by the 70 

National Health Commission of China, this standard is limited to Hubei Province). 71 

Statistical analysis 72 

Baseline demographic and clinical characteristics of all participants at time of admission 73 

are presented as means (standard deviations) or medians (interquartile ranges) for continuous 74 

variables, and as frequencies (percentage) for categorical variables, and presented by training 75 

and validation cohort in Table 1 and by in-hospital mortality in Table 2, respectively. 76 

Differences among groups were analyzed using χ² test, one-way ANOVA and Kruskal-Wallis 77 

tests for categorical variables, normally and skewed distributed continuous variables, 78 

respectively. 79 

In the model-development phase, we first performed univariate logistic regression 80 

analysis of all variables for the in-hospital mortality in the training cohort (supplementary 81 

material Table S1). For the variables at a statistically significant level (p < 0.05), we carried 82 

out variance inflation factor (VIF) test, and excluded the variables causing potential 83 

multicollinearity according to the criteria of VIF >5 (supplementary material Table S2). For 84 

the remaining variables screened by the above steps, we conducted extreme gradient boosting 85 

(XGBoost) model7, 8 to analysis the contribution (gain) of each variable to the in-hospital 86 

mortality (supplementary material Table S3 and Figure S1). At the same time, according to 87 

the Akaike information criterion (AIC) 9, we performed backward step-down selection 88 

processes by a threshold of P < 0.05 for the selection of variables in the predictive model.  89 
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After combination of the results of AIC and XGBoost, we selected clinical and 90 

laboratory variables to construct predictive models through multivariable logistic regression. 91 

We developed a clinical predictive model according to age, history of hypertension and 92 

coronary heart disease (CHD), and a laboratory model according to baseline age, peripheral 93 

capillary oxygen saturation (SpO2), neutrophil count, lymphocyte count, hsCRP, D-dimer, 94 

AST and GFR. We compared the area under the receiver operator characteristic (ROC) curve 95 

(AUC) between the two models by “Delong” method 10. Threshold, sensitivity, specificity, 96 

positive predictive value (PPV), negative predictive value (NPV) are also presented in Table 97 

3. We also formulated nomograms for the practical application (Figure 3). 98 

The statistical analyses were 2-tailed and P value < 0.05 was considered statistically 99 

significant. Data were analyzed with the use of the statistical packages R (The R Foundation; 100 

http://www.r-project.org; version 3.4.3) and Empower (R) (www.empowerstats.com, X&Y 101 

solutions, inc. Boston, Massachusetts). 102 

Results 103 

Among the 296 patients with COVID-19 enrolled in the training cohort, 22 (7.28%) died 104 

during hospitalization, and 280 (92.72%) were discharged from the hospital (Figure 1). The 105 

mean and median hospital stay of the non-survivors were 11.1 ± 5.8 and 11.6 [interquartile 106 

range (IQR), 8.6–15.5] days, respectively. The mean and median hospital stay of the 107 

survivors were 6.2 ± 5.0 and 4.9 (IQR, 2.6–10.5) days, respectively. The mean and median 108 

time interval between symptom onset and admission of the non-survivors were 5.2 ± 3.7 and 109 

5.0 (IQR, 3.0–7.0) days, respectively. And for the survivors were 6.8 ± 4.0 and 5.5 (IQR, 3.0–110 

9.2) days, respectively. 111 

Baseline clinical and laboratory characteristics of study population by training and 112 

validation cohort are shown in Table 1. We observed significant differences between the two 113 

cohorts in age, outcome, symptoms, and clinical indicators. The patients in validation cohort 114 

were remarkably older, with higher rates of diabetes and hypertension, lower SpO2, and 115 

worse markers of inflammation, clotting status, and liver and kidney function. 116 

The comparison between the survivors and the non-survivors were shown in Table 2. The 117 

mean age of the non-survivor group was remarkably higher than that of the survivor group in 118 

both cohorts. Medical history showed that the non-survivor group had a higher proportion of 119 

basic disease. No substantial difference was observed in the sex composition and habits of 120 

smoking and drinking between survivors and non-survivors. In the training cohort, non-121 

survivors had remarkably lower SpO2 than survivors. Inflammatory cells, namely, WBC and 122 
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neutrophil, were considerably higher whereas lymphocyte was remarkably lower in the non-123 

survivor group than in the survivor group. Meanwhile, hsCRP, a marker of inflammation, was 124 

also substantially elevated in the non-survivor group. In terms of blood coagulation indexes, 125 

the non-survivor group had higher D-dimer and thrombin time and lower activated partial 126 

thromboplastin time than the survivor group. Cr, BUN, ALT, AST, LDH, and blood ammonia 127 

were remarkably higher whereas GFR and serum ALB were significantly lower in the non-128 

survivor group. 129 

In the model-development phase, the clinical model developed according to age, history 130 

of hypertension and coronary heart disease showed good discriminatory power with AUC of 131 

0.88 (95% CI, 0.80-0.95), threshold of -2.6551, sensitivity of 92.31%, specificity of 77.44%, 132 

positive predictive value (PPV) of 21.43% and negative predictive value (NPV) of 99.34% 133 

(Table 3). The laboratory model developed with age, SpO2, neutrophil count, lymphocyte 134 

count, hsCRP, D-dimer, AST and GFR had a significantly stronger discriminatory power than 135 

the clinical model (p = 0.0157) with AUC of 0.98 (95% CI, 0.92-0.99), threshold of -2.9998, 136 

sensitivity of 100.00%, specificity of 89.23%, PPV of 48.15% and NPV of 100.00%.  137 

In the model validation phase, we observed good discriminatory powers with the AUCs 138 

of 0.83 (95% CI, 0.68–0.93) and 0.88 (95% CI, 0.75–0.96), threshold of -1.7976 and -3.8238, 139 

sensitivity of 64.29 % and 100.00 %, specificity of 93.33% and 70.00%, PPV of 81.82% and 140 

60.87 %, NPV of 100.00% NPVs of 84.85% and 100.00% for clinical model and laboratory 141 

model, respectively. (Table 4) 142 

The ROC of the two models in training and validation cohort were plotted in Figure 2. 143 

The nomogram of these models was drawn to provide quantitative and convenient tools in 144 

predicting the risk of in-hospital mortality of COVID-19 patients by clinical and laboratory 145 

characteristics at time of admission. (Figure 3). 146 

Discussion 147 

This training cohort included 296 patients with COVID-19 in Wuhan with a total in-148 

hospital mortality of 6.4%. We established a clinical model and a laboratory model to predict 149 

patient death by readily available clinical features at time of admission. Both models 150 

exhibited relatively good discriminatory power the and the external verification was also 151 

satisfactory. We believe that this is the first study to establish models for predicting the 152 

mortality of patients with COVID-19. 153 

The clinical model based on age, history of hypertension, and coronary heart disease had 154 

achieved good predictive power. Elderly people are at higher risks for chronic diseases and 155 
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more susceptible to infection. Age might be the risk factor for worse outcomes in patients 156 

with COVID-19 partially because age-related immune dysfunctions result from low-grade 157 

chronic inflammation according to our speculation.5,11 In addition, elderly patients may 158 

possess other risk factors, such as comorbidities and sarcopenia. Hypertension is one of the 159 

most common diseases in the elderly. History of hypertension is an important risk indicator in 160 

the MuLBSTA score, which is a viral pneumonia death warning model developed by Chinese 161 

scholars.12 Our results are consistent with the above research. In addition, angiotensin-162 

converting enzyme 2 (ACE2), the receptor of SARS-CoV-2,13 is directly involved in the 163 

process of acute lung injury after virus infection because of its important regulatory role in the 164 

renin–angiotensin–aldosterone system. However, an abnormal expression and dysregulation 165 

of ACE2 may occur in hypertensive individuals,14 which may be the reason for the poor 166 

prognosis of patients with hypertension complicated with COVID-19. The heart of a patient 167 

with CHD history and infected with SARS-CoV-2 has to work harder to ensure that sufficient 168 

blood oxygen is provided throughout the body. The problem of increased heart burden will 169 

become more prominent. Reasonable precautions must be taken to prevent these patients from 170 

the viral infection. 171 

XGBoost showed that hsCRP was the most important predictor for the mortality of patients 172 

with COVID-19, followed by age, SpO2, AST, neutrophil count, D-dimer, GFR and 173 

lymphocyte count. This finding is consistent with our clinical observation.  174 

A low SpO2 level suggests that the patients might have a serious illness at the time of 175 

admission. We found that most of the patients with COVID-19 had mild acute respiratory 176 

infection symptoms initially; however, the conditions of some patients would rapidly 177 

exacerbate and result in multiple organ failure or even death. We suspected this exacerbation 178 

was primarily due to the "cytokine storm" and consequent immunologic abnormality. 179 

Cytokine storm is an important cause of death in severe acute respiratory syndrome (SARS), 180 

Middle East respiratory syndrome coronavirus, and influenza A virus subtype H1N1 181 

infection.15-17 Cytokine storm also seems to be a remarkable mechanism in the present 182 

outbreak of COVID-19 and contributed to the death of several patients, especially young 183 

patients. A recent study showed that patients requiring ICU admission had higher 184 

concentrations of granulocyte colony-stimulating factor, interferon-induced protein 10, 185 

monocyte chemoattractant protein 1, macrophage inflammatory protein 1 alpha, and tumor 186 

necrosis factor alpha than those who did not require ICU admission, suggesting that cytokine 187 

storm is associated with disease severity.4 A remarkable finding of our study was that the 188 
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increasing level of hsCRP and neutrophil counts had prominent power in predicting fatal 189 

outcomes in patients with COVID-19. Neutrophil chemotaxis and transmigration are essential 190 

components for host defense during infections, but excessive neutrophil infiltration 191 

contributes to deleterious inflammatory processes,18 which might deeply interact with 192 

cytokine storm during virus invasion. 193 

The substantially depressed total lymphocytes in the non-survivor group indicated that 194 

SARS-CoV-2 might act on T lymphocytes, and high replication of the virus leads to the 195 

depletion of T lymphocytes, which suppresses the body's immunity.19 In addition, patients 196 

with severe illness are more likely to be co-infected with bacteria because of depressed 197 

immune function, which is another possible reason for the increased level of neutrophils and 198 

hsCRP. Further studies are necessary to elucidate the cytokine storm and immunologic 199 

abnormality in SARS-CoV-2 infection. 200 

We found that coagulation indicators might play a role in identifying severe cases as 201 

well. We observed that D-dimer was negatively associated with in-hospital mortality. 202 

According to previous research on SARS, inflammatory response may modify coagulation 203 

pathways and genes, which results in disseminated infarct and hemorrhage that can be seen in 204 

the lungs in the autopsy of patients with SARS.20 Wang et al. showed that 58% of patients 205 

with COVID-19 patients have prolonged prothrombin time.5 Tang et al. investigated the non-206 

survivors with COVID-19 and revealed that these non-survivors had remarkably higher D-207 

dimer and fibrin degradation product levels and longer prothrombin time compared with 208 

survivors upon admission. They suggested that common coagulation activation and secondary 209 

hyperfibrinolysis occur in the late stages of COVID-19 patients 
21

. 210 

Liver function was an important predictor for the mortality of patients with COVID-19. 211 

A recent research indicated that SARS-CoV-2 may directly bind to ACE2-positive 212 

cholangiocytes; thus, liver abnormalities in patients with COVID-19 may be due to 213 

cholangiocyte dysfunction and other causes, such as drug-induced and systemic inflammatory 214 

response-induced liver injuries 
22

. More research are needed, because most of our patients had 215 

evidence of liver dysfunction prior to therapy. Multiple-organ dysfunction, including kidney 216 

dysfunction, indicates poor survival outcome. In our study, GFR was remarkably lower in the 217 

non-survivor group than in the survivor group. A research of critically ill patients with 218 

COVID-19 in Wuhan showed that 29% had acute kidney injury 
23

. Therefore, we suggest that 219 

special care of kidney dysfunction should be included in the treatment of patients with 220 

COVID-19 during hospitalization. 221 
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At present, this novel infection has no specific treatment, and the use of IgG and 222 

systemic corticosteroid remains controversial; therefore, the early identification of patients 223 

with poor prognosis and early active intervention (e.g., early respiratory support 22, 224 

continuous renal replacement therapy, and immune adsorption) to avoid disease development 225 

are the key to treatment. However, early identification remains a difficult task for doctors as 226 

the symptoms of COVID-19 are not typical.  227 

The clinical model could help doctors to initially identify high-risk patients in settings 228 

with limited medical resources, such as patients who are isolated at home. We observed 229 

relatively high sensitivity (92.31%) and NPV (99.34%), which means a lower likelihood of 230 

missing high-risk individuals; a relatively low PPV (21.43%), which means a higher 231 

likelihood of misjudging individuals with actually low-risk. Therefore, the clinical model is 232 

suitable for the initial screening. The laboratory model showed better discriminatory power 233 

than the clinical model with an AUC value of 0.98, sensitivity and NPV of 100.00%. Baseline 234 

data for the model can be obtained in the patient's first routine examination after admission 235 

and can help doctors surmise the prognosis at an early stage and guide subsequent treatments; 236 

hence, the patients who are prone to develop the disease at critical level can get close 237 

attention and high-level treatments in advance. This model can also be used as a reference for 238 

transferring patients from community hospitals or square cabin hospitals (the temporary 239 

hospital for the placement and observation of mildly ill patients and suspected cases) to 240 

higher-level hospitals. 241 

In the model validation phase, we also observed good discriminatory powers with the 242 

AUCs of 0.83 and 0.88 for clinical model and laboratory model, respectively. Interestingly, 243 

high specificity and PPV were demonstrated in clinical models in the validation cohort, as 244 

opposed to the training cohort. We hypothesized that the probable reason was that there were 245 

more deaths in patients with a history of hypertensive or coronary artery disease in the 246 

validation cohort. More external validation is needed to demonstrate the robustness of the 247 

model, and we currently recommend that clinical models with limited information only be 248 

used for preliminary screening of high-risk populations. 249 

By comparing the training and validation populations in Table 1, we had observed 250 

significant differences between the two groups in age, symptoms, and examination index 251 

(SpO2, inflammatory cells, coagulation function, liver and kidney function). Our model has 252 

been validated and performed good discriminatory powers in heterogeneous populations with 253 

different levels of hospital, different death ratio and different physical condition, suggesting 254 

that the models may be applicable to different settings 255 
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Our study has several limitations. First, our research were carried out among patients 256 

with COVID-19 in Wuhan; therefore, further verification is needed in populations in other 257 

areas. Second, the record of data may be affected by prehospital medication and the time 258 

interval between admission and onset. Third, our analyses did not include data such as body 259 

mass index and viral load, which are potential risk factors to predict the severity of infection. 260 

However, our predictive models still showed good discriminatory power after verification in 261 

heterogeneous population. Fourth, we did not collect treatment-related data (such as 262 

mechanical ventilation) which may be critical to patient's prognosis. However, all hospitals in 263 

China carried out treatment in accordance with the guidelines issued by the National health 264 

commission of China
25

. In our current study, we established two predictive models based on 265 

data from the first examination upon admission as baseline data. Future studies should include 266 

repeated measures data to test whether longitudinal changes in clinical index have a stronger 267 

ability to predict prognosis. 268 

In this study, we built a clinical model and a laboratory model to predict the in-hospital 269 

mortality of patients with COVID-19, which exhibited relatively satisfactory discriminatory 270 

powers in external verification. Our models may help to achieve early intervention in high-271 

risk patients and rational allocation of medical resources.  272 

.273 
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Figure legends 

Figure 1 Flow chart of the cohort study  

Figure 2 ROC curves for in-hospital mortality of patients with COVID-19 for the 

training cohort (A) and validation cohort(B) . 

ROC curves of in-hospital mortality from logistic regression models of patients with clinical 

data (red ) and laboratory data (black) using Bootstrap resampling (times = 500). 

ROC = receiver operator characteristic. AUC = area under the curve.  

Figure 3 Nomogram to predict the in-hospital mortality of patients with COVID-19 for 

clinical model (A) and laboratory model (B). 

SpO2=peripheral capillary oxygen saturation. AST=aspartate aminotransferase. GFR= 

glomerular filtration rate.  
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Table 1: Baseline clinical and laboratory characteristics of study population by training and 

validation cohort. 

 Training cohort (n=296) Validation cohort 
(n=44) 

p-value 

Age, years 47.32 ± 14.95 55.2 ± 16.8 0.001 
Sex    
  Male 140 (47.3%)  24 (54.5%) 0.369 
  Female 156 (52.7%)  20 (45.5%)  
Outcome   <0.001 
  Survive 277 (93.58%) 30 (68.2%)  
  Non-survive 19 (6.4%) 14 (31.8%)  
Clinical symptoms    
Fever   0.006 
  no 77 (26.5%)  3 (7.1%)  
  yes 213 (73.5%)  39 (92.9%)  
Cough   <0.001 
  no 97 (33.0%)  29 (65.9%)  
  yes 197 (67.0%)  15 (34.1%)  
Chronic Disease    
Hypertension   0.065 
  no 254 (85.8%)  33 (75.0%)  
  yes 42 (14.2%)  11 (25.0%)  
Diabetes   0.045 
  no 266 (89.9%)  35 (79.5%)  
  yes 30 (10.1%)  9 (20.5%)  
Coronary heart disease   0.229 
  no 286 (96.6%)  41 (93.2%)   
  yes 10 (3.4%)  3 (6.8%)   
Cerebrovascular disease   0.329 
  no 289 (97.6%)  42 (95.5%)  
  yes 7 (2.4%)  2 (4.5%)  
Cancer   0.117 
  no 295 (99.7%)  43 (97.7%)  
  yes 1 (0.3%)  1 (2.3%)  
Habits    
Smoking   0.138 
  no 284 (96.0%)  40 (90.9%)  
  yes 12 (4.0%)  4 (9.1%)  
Drinking   0.033 
  no 279 (94.3%)  41 (93.2%)  
  yes 17 (5.7%)  3 (6.8%)  
Laboratory texting    
SpO2, % 97.0 (95.0-99.0)  96.1 (93.8-97.9)  0.020 
WBC, 109/L 4.7 (3.5-6.5)  6.1 (3.7-7.9) 0.007 
Neutrophil, 109/L 3.1 (2.1-4.6)  4.8 (2.3-6.4) 0.005 
Lymphocyte, 109/L 1.0 (0.7-1.4)  0.9 (0.6-1.2) 0.041 
hsCRP, mg/L 12.7 (2.5-32.3)  63.6 (19.8-88.5) <0.001 
ESR, mm/h 30.0 (18.0-42.5)  42.0 (26.0-71.8) <0.001 
APTT, sec 30.7 ± 4.0  38.9 ± 5.1 <0.001 
PT, sec 13.3 ± 1.9  13.5 ± 1.0 0.093 
D-dimer, ug/mL 0.2 (0.1-0.4)  0.8 (0.4-1.4) <0.001 
GFR, ml/min 102.2 ± 24.4  92.1 ± 20.5 <0.001 
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Cr, umol/L 63.2 (50.9-75.6)  71.8 (59.3-85.6) 0.019 
BUN, mmol/L 4.0 (3.1-5.1)  4.4 (3.2-5.6) 0.201 
AST, U/L 24.8 (20.0-34.1)  34.5 (25.5-54.5) <0.001 
ALT, U/L  18.2 (12.6-26.2)  27.5 (22.5-40.2) <0.001 
LDH, U/L 214.1 (177.0-267.8)  379.0 (265.0-454.0) <0.001 

Data are n (%), mean ± SD or median (interquartile range).  

SpO2=peripheral capillary oxygen saturation. WBC=White blood cell count. hsCRP=high sensitivity C reactive 

protein. ESR=erythrocyte sedimentation rate. APTT= activated partial thromboplastin time. PT= prothrombin 

time. GFR=Glomerular filtration rate. Cr=Creatinine. BUN=Blood urea nitrogen. AST=aspartate 

aminotransferase. ALT=alanine aminotransferase. LDH=lactate dehydrogenase. 
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Table 2: Baseline clinical and laboratory characteristics of study population by in-hospital 

mortality. 

 Training cohort 
(n=296) 

Validation cohort 
(n=44) 

 Survivors 
(277) 

Non-
survivors 
(n=19) 

p-
value 

Survivors 
(n=30) 

Non-
survivors 
(n=14) 

p-
value 

Age, years 46.0 ± 14.4 65.6 ± 12.6 <0.001 48.8 ± 14.2 69.0 ± 13.4 <0.001 
Sex       
  Male 129 (46.6%) 11 (57.9%) 0.339 14 (46.7%) 10 (71.4%) 0.124 
  Female 148 (53.4%) 8 (42.1%)  16 (53.3%) 4 (28.6%)  
Signs and 
Symptoms 

   
  

 

Fever   0.056   0.226 
  no 68 (25.1%) 9 (47.4%)  3 (10.0%) 0 (0.0%)  
  yes 203 (74.9%) 10 (52.6%)  27 (90.0%) 12 (100.0%)  
Cough   0.252   0.226 
  no 93 (33.8%) 4 (21.1%)  18 (60.0%) 11 (78.6%)  
  yes 182 (66.2%) 15 (78.9%)  12 (40.0%) 3 (21.4%)  
Basic Disease       
Hypertension   <0.001   0.709 
  no 244 (88.1%) 10 (52.6%)  23 (76.7%) 10 (71.4%)  
  yes 33 (11.9%) 9 (47.4%)  7 (23.3%) 4 (28.6%)  
Diabetes   0.001   0.362 
  no 253 (91.3%) 13 (68.4%)  25 (83.3%) 10 (71.4%)  
  yes 24 (8.7%) 6 (31.6%)  5 (16.7%) 4 (28.6%)  
COPD   0.012   - 
  no 276 (99.6%) 18 (94.7%)  - -  
  yes 1 (0.4%) 1 (5.3%)  - -  
Coronary heart 
disease 

  <0.001   0.009 

  no 272 (98.2%) 14 (73.7%)  30 (100.0%) 11 (78.6%)  
  yes 5 (1.8%) 5 (26.3%)  0 (0.0%) 3 (21.4%)  
Chronic kidney 
disease 

  0.211   - 

  no 273 (98.6%) 18 (94.7%)  - -  
  yes 4 (1.4%) 1 (5.3%)  - -  
Cerebrovascular 
disease 

  <0.001   0.572 

  no 273 (98.6%) 16 (84.2%)  29 (96.7%) 13 (92.9%)  
  yes 4 (1.4%) 3 (15.8%)  1 (3.3%) 1 (7.1%)  
Cancer   0.793   0.490 
  no 276 (99.6%) 19 (100.0%)  29 (96.7%) 14 (100.0%)  
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  yes 1 (0.4%) 0 (0.0%)  1 (3.3%) 0 (0.0%)  
Habits       
Smoking   0.556   0.759 
  no 266 (96.0%) 18 (94.7%)  27 (90.0%) 13 (92.9%)  
  yes 11 (4.0%) 1 (5.3%)  3 (10.0%) 1 (7.1%)  
Drinking   0.926   0.572 
  no 261 (94.2%) 18 (94.7%)  29 (96.7%) 12 (85.7%)  
  yes 16 (5.8%) 1 (5.3%)  1 (3.3%) 2 (14.3%)  
Laboratory texting       
SpO2, % 97.0 (96.0-

99.0) 
92.5 (80.5-
94.8) 

<0.001 97.2 (95.4-
98.1) 

94.0 (91.3-
96.0) 

0.013 

Systolic pressure, 
mmHg 

124.8 ± 
16.8 

124.7 ± 24.3 
0.509 -  -  -  

Diastolic pressure, 
mmHg 

78.8 ± 12.5 
68.1 ± 15.7 

0.003 -  -  -  

WBC, 109/L 4.7 (3.4-
6.4) 

7.8 (4.7-
11.9) 

<0.001 5.3 (3.2-
7.3) 

6.8 (5.9-
9.1) 

0.029 

Neutrophil, 109/L 3.0 (2.0-
4.4) 

6.4 (3.2-
10.0) 

<0.001 3.4 (2.0-
5.0) 

5.8 (5.0-
8.4) 

<0.001 

Lymphocyte, 109/L 1.0 (0.7-
1.4) 

0.7 (0.5-1.0) 
0.003 0.9 (0.7-

1.2) 
0.6 (0.5-
0.8) 

0.048 

Monocyte, 109/L 0.5 (0.3-
0.6) 

0.3 (0.3-0.6) 0.273 
-  -  -  

hsCRP, mg/L 11.4 (2.2-
27.9) 

88.6 (59.7-
118.0) 

<0.001 39.9 (11.9-
68.1) 

98.0 (85.5-
117.8) 

<0.001 

ESR, mm/h 30.9 ± 14.5 36.9 ± 13.1 0.192  41.0 ± 25.2 60.9 ± 29.5  0.036 
APTT, sec 30.8 ± 4.1 29.3 ± 3.0 0.107 38.8 ± 4.3 39.3 ± 6.6 0.743 
PT, sec 13.3 ± 1.9 13.7 ± 1.9 0.372 13.2 ± 0.8 14.1 ± 1.2 0.007 
TT, sec 16.3 ± 2.1 18.8 ± 9.7 <0.001 -  -  -  
FIB, g/L 3.9 ± 1.0 4.2 ± 1.5 0.099 -  -  -  
D-dimer, ug/mL 0.2 (0.1-

0.3) 
0.5 (0.4-1.4) 

<0.001 0.6 (0.3-
1.1) 

1.1 (0.9-
1.6) 

0.025 

GFR, ml/min 104.0 ± 
22.5 

74.0 ± 34.7  
<0.001 99.6 ± 16.6 76.1 ± 19.2 <0.001 

Cr, umol/L 62.5 (50.9-
74.6) 

81.4 (61.4-
110.2) 

<0.001 66.9 (56.0-
74.8) 

80.3 (66.4-
96.9) 

0.004 

BUN, mmol/L 3.9 (3.1-
5.0) 

6.2 (4.9-8.2) 
<0.001 3.9 (3.2-

5.1) 
6.4 (4.9-
8.0) 

0.001 

AST, U/L 24.4 (19.3-
32.1) 

43.4 (34.3-
60.1) 

<0.001 30.0 (23.2-
52.2) 

41.0 (34.5-
56.8) 

0.104 

ALT, U/L  18.1 (12.3-
25.9) 

20.2 (16.2-
51.9) 

0.006 26.5 (19.5-
38.0) 

30.5 (23.0-
50.5) 

0.879 

LDH, U/L 213.0 
(175.5-
256.0) 

478.6 
(363.5-
637.2) 

<0.001 327.0 
(207.0-
410.0) 

466.5 
(363.5-
543.0) 

0.015 

Total bilirubin, 
umol/L 

8.2 (5.5-
11.8) 

10.2 (5.9-
17.0) 

0.159 -  -  -  

ALB, g/L 40.4 ± 4.1 34.4 ± 4.5  <0.001 -  -  -  
CLO, g/L 26.5 ± 5.2  30.1 ± 4.2 0.003 -  -  -  
A/G 1.6 ± 0.4 1.2 ± 0.3 <0.001 -  -  -  
Blood ammonia, 
umol/L 

25.0 (14.9-
35.7) 

31.7 (26.3-
44.2) 

0.066 -  -  -  

CK, U/L 57.0 (35.0-
91.0) 

114.0 (69.0-
196.0) 

<0.001 -  -  -  
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CK-MB, U/L 13.5 (11.4-
17.1) 

17.5 (16.7-
28.1) 

<0.001 -  -  -  

Data are n (%), mean ± SD or median (interquartile range).  

SpO2=peripheral capillary oxygen saturation. WBC=White blood cell count. hsCRP=high sensitivity C reactive 

protein. ESR=erythrocyte sedimentation rate. APTT= activated partial thromboplastin time. PT= prothrombin 

time. TT=thrombin time. FIB= plasma fibrinogen. GFR=Glomerular filtration rate. Cr=Creatinine. BUN=Blood 

urea nitrogen. AST=aspartate aminotransferase. ALT=alanine aminotransferase. LDH=lactate dehydrogenase. 

ALB=albumin. GLO=globulin. CK=creatine kinase. 

- Data not collected in the validation cohort. 
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Table 3: Multivariable logistic regression models of in-hospital mortality in the training 

cohort. 

  Clinical model  Laboratory model 

 Estimate p 
value 

 Estimate p value 

Baseline predictors 
Age, years  1.11 (1.05, 

1.17) 
0.0005  1.10 (0.97, 

1.24)  
0.1391 

History of hypertension  1.82 (0.50, 
6.63)  

0.3670  ·· ·· 

History of CHD  3.04 (0.45, 
20.74)  

0.2569  ·· ·· 

SpO2, %  ·· ··  0.71 (0.57, 
0.88) 

0.0020 

Neutrophil count, 10^9/L  ·· ··  1.37 (1.04, 
1.81) 

0.0248 

Lymphocyte count, 
10^9/L 

 ·· ··  0.51 (0.04, 
7.12) 

0.6204 

hsCRP, mg/L  ·· ··  1.04 (1.01, 
1.08)  

0.0054 

D-dimer, ug/mL  ·· ··  0.56 (0.24, 
1.31)  

0.1813 

AST, U/L  ·· ··  1.05 (1.00, 
1.10)  

0.0547 

GFR, ml/min  ·· ··  1.05 (1.00, 
1.10)  

0.0447 

Model characteristics 
AUC*  0.88 (0.80, 

0.95) 
··  0.98 (0.92, 

0.99) 
·· 

Threshold  -2.6551   -2.9998  
AIC  80.23 ··  32.95 ·· 
Sensitivity, %  92.31 ··  100.00 ·· 
Specificity, %  77.44 ··  92.82 ·· 
Positive predictive 
value, % 

 21.43 ··  48.15 ·· 

Negative predictive 
value, % 

 99.34 ··  100.00 ·· 

Laboratory model vs clinical model 
Comparison of AUC*  ·· ··  ·· 0.0157 

Baseline predictors are OR, unless otherwise stated, with 95% CIs in parentheses when appropriate. 

Prameters were selected by Stepwise (AIC) and contribution (gain) of each variable to the in-hospital death 

according to the ensemble XGBoost model. Sensitivity, specificity, positive predictive value, and negative 

predictive value were based on a predicted probability of 0.50. CHD=coronary heart disease. NA=not 

applicable. AIC= Akaike information criterion. AUC=area under the curve.  

*Bootstrap resampling (times = 500). 
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Table 4: Accuray of the clinical model and laboratory model in the training and validation cohort. 

 Training cohort 
(n=296) 

Validation cohort 
(n=44) 

Model characteristics Clinical model Laboratory 
model 

Clinical model Laboratory 
model 

AUC* 0.88 (0.80, 
0.95) 

0.98 (0.92, 0.99) 0.83 (0.68, 
0.93) 

0.88 (0.75, 
0.96) 

Threshold -2.6551 -2.9998 -1.7976 -3.8238 
AIC 80.23  32.95 42.20 37.62 
Sensitivity, % 92.31  100.00 64.29 100.00  
Specificity, % 77.44 92.82 93.33 70.00 
Positive predictive 
value, % 

21.43 48.15 81.82 60.87  

Negative predictive 
value, % 

99.34 100.00 84.85 100.00  

AUC=area under the curve. AIC= Akaike information criterion.  

*Bootstrap resampling (times = 500). 
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Figure 1 
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Figure 2 
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Figure 3A 
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Figure 3B 

 


